Sodium entry efficiency during action potentials: A novel single-parameter family of Hodgkin-Huxley models
نویسندگان
چکیده
Sodium entry during an action potential determines the energy efficiency of a neuron. The classic Hodgkin-Huxley model of action potential generation is notoriously inefficient in that regard with about 4 times more charges flowing through the membrane than the theoretical minimum required to achieve the observed depolarization. Yet, recent experimental results show that mammalian neurons are close to the optimal metabolic efficiency and that the dynamics of their voltage-gated channels is significantly different than the one exhibited by the classic Hodgkin-Huxley model during the action potential. Nevertheless, the original Hodgkin-Huxley model is still widely used and rarely to model the squid giant axon from which it was extracted. Here, we introduce a novel family of HodgkinHuxley models that correctly account for sodium entry, action potential width and whose voltage-gated channels display a dynamics very similar to the most recent experimental observations in mammalian neurons. We speak here about a family of models because the model is parameterized by a unique parameter the variations of which allow to reproduce the entire range of experimental observations from cortical pyramidal neurons to Purkinje cells, yielding a very economical framework to model a wide range of different central neurons. The present paper demonstrates the performances and discuss the properties of this new family of models.
منابع مشابه
Effects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملMetabolic efficiency with fast spiking in the squid axon
Fundamentally, action potentials in the squid axon are consequence of the entrance of sodium ions during the depolarization of the rising phase of the spike mediated by the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect metabolic efficiency with a minimum charge needed for the change in voltage during the action potential would confine sodium entry to the r...
متن کاملIons through the Membrane of the Giant Axon of Loligo by A. L. Hodgkin and A. F. Huxley
In the preceding paper (Hodgkin, Huxley & Katz, 1952) we gave a general description of the time course of the current which flows through the membrane of the squid giant axon when the potential difference across the membrane is suddenly changed from its resting value, and held at the new level by a feed-back circuit ('voltage clamp' procedure). This article is chiefly concerned with the identit...
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملAction Potential Initiation in the Hodgkin-Huxley Model
A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010